We discuss non-Euclidean deterministic and stochastic algorithms foroptimization problems with strongly and uniformly convex objectives. We provideaccuracy bounds for the performance of these algorithms and design methodswhich are adaptive with respect to the parameters of strong or uniformconvexity of the objective: in the case when the total number of iterations $N$is fixed, their accuracy coincides, up to a logarithmic in $N$ factor with theaccuracy of optimal algorithms.
展开▼
机译:我们讨论具有强和均匀凸目标的非欧几里德确定性和随机算法的优化问题。我们为这些算法和设计方法的性能提供了精确界限,这些界限与目标的强凸性或均匀凸性的参数相适应:在迭代总数$ N $固定的情况下,它们的精度重合,直到对数为止在$ N $因子中具有最优算法的准确性。
展开▼